
ECE 7680
Lecture AC – Arithmetic Coding

Objective: To introduce arithmetic coding

Introduction

Arithmetic coding overcomes some of the problems of Huffman coding, in particular
the potential 1 bit surplus problem. It operates as a human might, using informa-
tion already observed to predict what might be coming, and coding based on the
prediction. In addition, the technique explicitly separates the prediction portion
from the encoding portion.

In AC, a bit sequence is interpreted as an interval on the real line from 0 to 1.
For example 01 is interpreted as 0.01...., which corresponds (not knowing what the
following digits are) to the interval [0.01, 0.10) (in binary) which is [0.25, 0.5) (bse
ten). (Make sure understanding on brackets.) A longer string 01101 corresponds
to the interval [0.01101, 0.01110). The longer the string, the shorter the interval
represented on the real line.

Assume we are dealing with an alphabet A = {a1, . . . , aI}, where aI is a spe-
cial symbol meaning “end of transmission.” The source produces the sequence
x1, x2, . . . , xn, . . . , and not necessarily i.i.d. We further assume (or model) that
there is a predictor which computes, or estimates

P (xn = ai|x1, x2, . . . , xn−1),

which is available at both encoder and decoder.
We divide the segment [0, 1) into I intervals whose lengths are equal to the

probabilities P (x1 = ai), i = 1, 2, . . . , I. The first interval is

[0, P (x1 = a1))

The second interval is

[P (x1 = a1), P (x1 = a1) + P (x1 = a2)),

and so forth. More generally, to provide for the possibility of considering other
symbols than just x1, we define the lower and upper cumulative probabilities:

Qn(ai|x1, . . . , xn−1) =
i−1∑
j=1

P (xn = aj |x1, . . . , xn−1)

Rn(ai|x1, . . . , xn−1) =
i∑

j=1

P (xn = aj |x1, . . . , xn−1)

Then, for example, a2 corresponds to the interval [Q1(a2), R1(a2)).
Now we represent the probabilities for the next symbol. Take, for example,

the interval for a1, and subdivide it into intervals a1a1, a1a2, . . . , a1aI , so that the
length of the interval for a1aj is proportional to P (aj |a1). In fact, we take the length
of the subinterval for a1aj to be

P (x1 = a1, x2 = aj) = P (x1 = a1)P (x2 = aj |x1 = a1)



ECE 7680: Lecture AC – Arithmetic Coding 2

Then we note that the sum of the lengths of these subintervals will be∑
j

P (x1 = a1, x2 = aj) = P (x1 = a1),

which sure enough is the correct length.
More generally, we subdivide each of the intervals for aiaj similarly to have

length of

P (x1 = ai, x2 = aj) = P (x1 = a1)P (x2 = aj |a1 = ai).

Then, we continue subdividing each subinterval for strings of length N .
The following algorithm (Mackay, p. 151) shows how to compute the interval

[u, v) for the string x1x2, . . . , xN . (Note: this is for demonstration purposes, since
it requires infinite precision arithmetic. In practice, the algorithm is arranged so
that infinite precision is not required.)

Algorithm 1 Arithmetic coding

u = 0.0 lower side of interval
v = 1.0 upper side of interval
p = v − u length of current interval = probability of sequence
for n = 1 to N {

Compute upper and lower cumulative probabilities
Compute Rn(i|x1, . . . , xn−1) for i = 1, 2, . . . , I
Compute Qn(i|x1, . . . , xn−1) for i = 1, 2, . . . , I
u = u+ pQn(xn|x1, . . . , xn−1) update lower side by joint length
v = u+ pRn(xn|x1, . . . , xn−1) update upper side by joint length
p = v − u compute new length = new probability
}

In encoding, the interval is subdivided for each new symbol. To encode the string
x1, x2, . . . , xN , we send the binary string whose interval lies within the interval
determined by the sequence.
Example 1 (Mackay, p. 151) Suppose a bent coin with outcomes a and b is to be

transmitted. We throw in the outcome � to represent ‘end of transmission’.
Suppose we want to code bbba�. We obtain the following table (the reasoning

behind the probability values will be discussed below).

Context
(sequence thus far) Probability of next symbol

P (a) = 0.425 P (b) = 0.425 P (�) = 0.15
b P (a|b) = 0.28 P (b|b) = 0.57 P (�|b) = 0.15
bb P (a|bb) = 0.21 P (b|bb) = 0.64 P (�|bb) = 0.15
bbb P (a|bbb) = 0.17 P (b|bbb) = 0.68 P (�|bbb) = 0.15
bbba P (a|bbba) = 0.28 P (b|bbba) = 0.57 P (�|bbba) = 0.15

The subdivision of the interval is portrayed in the following figure (Mackay, fig. 4.3)
.

When the first bis observed, the encoded knows that the encoded string will
start as 01, 10, or 00 (see the figure), but doesn’t know which. No output symbol
is produced. For the next symbol b, the interval lies wholly within the interval 1,
so the encoder outputs 1. However, no additional bits can be sent yet. At the third
symbol b, there is still not quite enough information (but very close)! When the ais
read, the interval lies entirely within 1001, which can now be output. When �, we
obtain the division shown on the right. The interval 10011101 is contained in the
interval for bbba�, so we send that sequence.



ECE 7680: Lecture AC – Arithmetic Coding 3

The decoder receives 100111101 and parses it one bit at a time. The prob-
abilities are built up exactly as before. Once 10 have been parsed, it is known
that the original string must have contained a b, since 10 lies within the interval
b. Knowing this, the decoding computes P (a|b), P (b|b) and P (�|b), conditioned
upon the symbol that has been received, then deduce the boundaries of the intervals
ba, bb and b�. Eventually, the second bis decoded, which is used to condition the
probabilities. This continues until decoding is complete. When the �is reached the
decoder knows that the end of file has been reached. 2

One of the benefits of arithmetic coding is that the worst case redundancy for an
entire bit string (which may, for example, consist of an entire file) is at most two
bits, assuming the probabilistic model is correct. Given a probabilistic model H,
the ideal message length for a sequence x is l(x|H) = − log[P (x|H)]. Suppose that
P (x|H) is just barely between two binary intervals. Then the next smaller binary in-
tervals contained in P (x|H) are smaller by a factor of 4. This factor of 4 corresponds
to log2 4 = 2 bits overhead worst case.

Probability models

Performance of the AC depends on having a good model for the source probabilities.
The better the model, the better it might be expected that the code performs.
In principle, any probabilistic model can be used. We mention here some useful
concepts in developing one.

Suppose, as before, we deal with the case of independent events. We have
outcomes a, b, and �, with probabilities pa, pb and p�. Let l be the number of
outcomes (number of coin tosses). pa could be anywhere in the range [0, 1], and we
may not have any predisposition toward one value. We model this ambivalence by
saying that

P (pa) = 1 for pa ∈ [0, 1].

That is, it is uniformly distributed. This is a prior probability. If we had some
predisposition about pa, this could be incorporated into the prior model (using
something like a β distribution, for example).

The whole point of Bayesian estimation (which is what we find we are talking
about here) is to merge our prior inclinations in with the observations. This is
a problem of inference, which we can state this way: given a sequence of F bits,
of which Fa are as and Fb are bs, infer pa. The inference is accomplished by the
posterior (“after”) — the probability of pa after a measurement s is made. We write

P (pa|s, F ) =
P (s|pa, F )P (pa)

P (s|F )
.

Now why this? Well, we can write down the conditional probability in the numer-
ator:

P (s|pa, F ) = pFa
a (1− pa)Fa

(describe why). As we have seen elsewhere, it seems that the conditioning is always
easiest they way you don’t need it. We also find

P (s|F ) =
∫
P (s|pa, F )P (pa)dpa =

∫
pFa
a (1− pa)FbP (pa)dpa =

Γ(Fa + 1)Γ(Fb + 1)
Γ(Fa + Fb + 2)

=
Fa!Fb!

Fa + Fb + 1)!

So we could infer pa as the most probable value (the maximizer) of the posterior.
For example, we find P (pa|s = aba, F = 3) ∝ p2

a(1−pa), with maximum of pa = 2/3.
Or we could infer based on the mean, which is 3/5.



ECE 7680: Lecture AC – Arithmetic Coding 4

We also want to be able to make predictions. Given a sequence s of length F as
evidence we find the prediction of drawing an aas

P (a|s, F ) =
∫
P (a|patt)P (pa|s, F )dpa.

Note that in this case, we are using the entire posterior probability, so we incorporate
all of our uncertainty about pa. We also have P (a|pa) = pa (by its definition), so
our predictor is

P (a|s, F ) =
∫
pa
pFa
a (1− pa)Fa

P (s|F )
dpa =

Fa + 1
Fa + Fb + 2

.

This update rule is known as Laplace’s rule, and is the rule that was used in the
coder above.

We could write this as

PL(a|x1, . . . , xn−1) =
Fa + 1∑
i(Fi + 1)

Another model, known as the Dirichlet model, is more “responsive”:

PD(a|x1, . . . , xn−1) =
Fa + α∑
i(Fi + α)

Typically, α is small, like 0.01.
This is not the only possible rule, and doesn’t necessarily take into account the

relationship that might exist between dependent variables.

Another application of AC

Mackay suggests another application as a way of generating a sample from a model,
a sophisticated random number generator. As a simple-minded example, divide the
unit interval into lengths pi. Pick a point at random on the unit interval. The
probability that your pin lies in interval i is pi.

More generally, to generate a sample of bits from some random model, feed
ordinary random bits into an arithmetic decoder for that model. This corresponds
to picking a point at random in [0, 1]. The decoder will select a string at random
from the modeled distribution, and will use the smallest number of random numbers
to do the job.


